Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5546, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448541

ABSTRACT

Biological samples are often frozen and stored for years and/or thawed multiple times, thus assessing their stability on long-term storage and repeated freeze-thaw cycles is crucial. The study aims were to assess:-the long-term stability of two major enzymatic and non-enzymatic metabolites of arachidonic acid, i.e. urinary 11-dehydro-thromboxane-(Tx) B2, 8-iso-prostaglandin (PG)F2α, and creatinine in frozen urine samples;-the effect of multiple freeze-thaw cycles. Seven-hundred and three urine samples measured in previously-published studies, stored at -40 °C, and measured for a second time for 11-dehydro-TxB2 (n = 677) and/or 8-iso-PGF2α (n = 114) and/or creatinine (n = 610) were stable over 10 years and the 2 measurements were highly correlated (all rho = 0.99, P < 0.0001). Urine samples underwent 10 sequential freeze-thaw cycles, with and without the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (10 mM); urinary 11-dehydro-TxB2 and creatinine were stable across all cycles (11-dehydro-TxB2: 100.4 ± 21%; creatinine: 101 ± 7% of baseline at cycle ten; n = 17), while 8-iso-PGF2α significantly increased by cycle 6 (151 ± 22% of baseline at cycle ten, n = 17, P < 0.05) together with hydrogen peroxide only in the absence of antioxidant. Arachidonic acid metabolites and creatinine appear stable in human urines stored at -40 °C over 10 years. Multiple freeze-thaw cycles increase urinary 8-iso-PGF2α in urine samples without antioxidants. These data are relevant for studies using urine samples stored over long-term and/or undergoing multiple freezing-thawing.


Subject(s)
Antioxidants , Prostaglandins F , Humans , Arachidonic Acid , Creatinine , Freezing , Immunoenzyme Techniques , Thromboxanes
2.
Eur Heart J ; 45(15): 1355-1367, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38385506

ABSTRACT

BACKGROUND AND AIMS: Thromboxane (TX) A2, released by activated platelets, plays an important role in atherothrombosis. Urinary 11-dehydro-TXB2 (U-TXM), a stable metabolite reflecting the whole-body TXA2 biosynthesis, is reduced by ∼70% by daily low-dose aspirin. The U-TXM represents a non-invasive biomarker of in vivo platelet activation and is enhanced in patients with diabetes. This study assessed whether U-TXM is associated with the risk of future serious vascular events or revascularizations (SVE-R), major bleeding, or cancer in patients with diabetes. METHODS: The U-TXM was measured pre-randomization to aspirin or placebo in 5948 people with type 1 or 2 diabetes and no cardiovascular disease, in the ASCEND trial. Associations between log U-TXM and SVE-R (n = 618), major bleed (n = 206), and cancer (n = 700) during 6.6 years of follow-up were investigated by Cox regression; comparisons of these associations with the effects of randomization to aspirin were made. RESULTS: Higher U-TXM was associated with older age, female sex, current smoking, type 2 diabetes, higher body size, urinary albumin/creatinine ratio of ≥3 mg/mmol, and higher estimated glomerular filtration rate. After adjustment for these, U-TXM was marginally statistically significantly associated with SVE-R and major bleed but not cancer [hazard ratios per 1 SD higher log U-TXM (95% confidence interval): 1.09 (1.00-1.18), 1.16 (1.01-1.34), and 1.06 (0.98-1.14)]. The hazard ratio was similar to that implied by the clinical effects of randomization to aspirin for SVE-R but not for major bleed. CONCLUSIONS: The U-TXM was log-linearly independently associated with SVE-R in diabetes. This is consistent with the involvement of platelet TXA2 in diabetic atherothrombosis.


Subject(s)
Diabetes Mellitus, Type 2 , Neoplasms , Thrombosis , Humans , Female , Thromboxanes/metabolism , Thromboxanes/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Aspirin/therapeutic use , Thromboxane B2/therapeutic use , Thromboxane B2/urine , Thromboxane A2/therapeutic use , Thromboxane A2/urine , Thrombosis/drug therapy , Neoplasms/drug therapy
3.
Br J Cancer ; 129(4): 706-720, 2023 09.
Article in English | MEDLINE | ID: mdl-37420000

ABSTRACT

BACKGROUND: Pre-clinical models demonstrate that platelet activation is involved in the spread of malignancy. Ongoing clinical trials are assessing whether aspirin, which inhibits platelet activation, can prevent or delay metastases. METHODS: Urinary 11-dehydro-thromboxane B2 (U-TXM), a biomarker of in vivo platelet activation, was measured after radical cancer therapy and correlated with patient demographics, tumour type, recent treatment, and aspirin use (100 mg, 300 mg or placebo daily) using multivariable linear regression models with log-transformed values. RESULTS: In total, 716 patients (breast 260, colorectal 192, gastro-oesophageal 53, prostate 211) median age 61 years, 50% male were studied. Baseline median U-TXM were breast 782; colorectal 1060; gastro-oesophageal 1675 and prostate 826 pg/mg creatinine; higher than healthy individuals (~500 pg/mg creatinine). Higher levels were associated with raised body mass index, inflammatory markers, and in the colorectal and gastro-oesophageal participants compared to breast participants (P < 0.001) independent of other baseline characteristics. Aspirin 100 mg daily decreased U-TXM similarly across all tumour types (median reductions: 77-82%). Aspirin 300 mg daily provided no additional suppression of U-TXM compared with 100 mg. CONCLUSIONS: Persistently increased thromboxane biosynthesis was detected after radical cancer therapy, particularly in colorectal and gastro-oesophageal patients. Thromboxane biosynthesis should be explored further as a biomarker of active malignancy and may identify patients likely to benefit from aspirin.


Subject(s)
Aspirin , Colorectal Neoplasms , Female , Humans , Male , Middle Aged , Biomarkers , Colorectal Neoplasms/drug therapy , Creatinine , Thromboxanes/therapeutic use
4.
Clin Transl Sci ; 15(12): 2958-2970, 2022 12.
Article in English | MEDLINE | ID: mdl-36200184

ABSTRACT

Low-dose aspirin is currently recommended for patients with polycythemia vera (PV), a myeloproliferative neoplasm with increased risk of arterial and venous thromboses. Based on aspirin pharmacodynamics in essential thrombocythemia, a twice-daily regimen is recommended for patients with PV deemed at particularly high thrombotic risk. We investigated the effects of low-dose aspirin on platelet cyclooxygenase activity and in vivo platelet activation in 49 patients with PV, as assessed by serum thromboxane (TX) B2 and urinary TXA2 /TXB2 metabolite (TXM) measurements, respectively. A previously described pharmacokinetic-pharmacodynamic in silico model was used to simulate the degree of platelet TXA2 inhibition by once-daily (q.d.) and twice-daily (b.i.d.) aspirin, and to predict the effect of missing an aspirin dose during q.d. and b.i.d. regimens. Serum TXB2 averaged 8.2 (1.6-54.7) ng/ml and significantly correlated with the platelet count (γ = 0.39) and urinary TXM (γ = 0.52) in multivariable analysis. One-third of aspirin-treated patients with PV displayed less-than-maximal platelet TXB2 inhibition, and were characterized by significantly higher platelet counts and platelet-count corrected serum TXB2 than those with adequate inhibition. Eight patients with PV were sampled again after 12 ± 4 months, and had reproducible serum TXB2 and urinary TXM values. The in silico model predicted complete inhibition of platelet-derived TXB2 by b.i.d. aspirin, a prediction verified in a patient with PV with the highest TXB2 value while on aspirin q.d. and treated short-term with a b.i.d. regimen. In conclusion, one in three patients with PV on low-dose aspirin display less-than-maximal inhibition of platelet TXA2 production. Serum TXB2 measurement can be a valuable option to guide precision dosing of antiplatelet therapy in patients with PV.


Subject(s)
Polycythemia Vera , Humans , Polycythemia Vera/drug therapy , Polycythemia Vera/metabolism , Thromboxanes/metabolism , Thromboxanes/pharmacology , Thromboxanes/therapeutic use , Aspirin/pharmacology , Blood Platelets/metabolism , Thromboxane B2 , Thromboxane A2/metabolism , Thromboxane A2/pharmacology , Computer Simulation , Platelet Aggregation Inhibitors
5.
Antioxidants (Basel) ; 11(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35883899

ABSTRACT

Oxidative stress is generated by the imbalance between reactive oxygen species (ROS) formation and antioxidant scavenger system's activity. Increased ROS, such as superoxide anion, hydrogen peroxide, hydroxyl radical and peroxynitrite, likely contribute to the development and complications of atherosclerotic cardiovascular diseases (ASCVD). In genetically modified mouse models of atherosclerosis, the overexpression of ROS-generating enzymes and uncontrolled ROS formation appear to be associated with accelerated atherosclerosis. Conversely, the overexpression of ROS scavenger systems reduces or stabilizes atherosclerotic lesions, depending on the genetic background of the mouse model. In humans, higher levels of circulating biomarkers derived from the oxidation of lipids (8-epi-prostaglandin F2α, and malondialdehyde), as well as proteins (oxidized low-density lipoprotein, nitrotyrosine, protein carbonyls, advanced glycation end-products), are increased in conditions of high cardiovascular risk or overt ASCVD, and some oxidation biomarkers have been reported as independent predictors of ASCVD in large observational cohorts. In animal models, antioxidant supplementation with melatonin, resveratrol, Vitamin E, stevioside, acacetin and n-polyunsaturated fatty acids reduced ROS and attenuated atherosclerotic lesions. However, in humans, evidence from large, placebo-controlled, randomized trials or prospective studies failed to show any athero-protective effect of antioxidant supplementation with different compounds in different CV settings. However, the chronic consumption of diets known to be rich in antioxidant compounds (e.g., Mediterranean and high-fish diet), has shown to reduce ASCVD over decades. Future studies are needed to fill the gap between the data and targets derived from studies in animals and their pathogenetic and therapeutic significance in human ASCVD.

6.
Front Pharmacol ; 12: 715111, 2021.
Article in English | MEDLINE | ID: mdl-34566641

ABSTRACT

The occurrence and persistence of hepatic injury which arises from cell death and inflammation result in liver disease. The processes that lead to liver injury progression and resolution are still not fully delineated. The plasma kallikrein-kinin system (PKKS) has been shown to play diverse functions in coagulation, tissue injury, and inflammation, but its role in liver injury has not been defined yet. In this study, we have characterized the role of the PKKS at various stages of liver injury in mice, as well as the direct effects of plasma kallikrein on human hepatocellular carcinoma cell line (HepG2). Histological, immunohistochemical, and gene expression analyses were utilized to assess cell injury on inflammatory and fibrotic factors. Acute liver injury triggered by carbon tetrachloride (CCl4) injection resulted in significant upregulation of the plasma kallikrein gene (Klkb1) and was highly associated with the high mobility group box 1 gene, the marker of cell death (r = 0.75, p < 0.0005, n = 7). In addition, increased protein expression of plasma kallikrein was observed as clusters around necrotic areas. Plasma kallikrein treatment significantly increased the proliferation of CCl4-induced HepG2 cells and induced a significant increase in the gene expression of the thrombin receptor (protease activated receptor-1), interleukin 1 beta, and lectin-galactose binding soluble 3 (galectin-3) (p < 0.05, n = 4). Temporal variations in the stages of liver fibrosis were associated with an increase in the mRNA levels of bradykinin receptors: beta 1 and 2 genes (p < 0.05; n = 3-10). In conclusion, these findings indicate that plasma kallikrein may play diverse roles in liver injury, inflammation, and fibrosis, and suggest that plasma kallikrein may be a target for intervention in the states of liver injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...